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Abstract 

Wilderness search and rescue operations function under critical time pressures and resource 

constraints.  For optimal deployment, personnel must be assigned to prioritized search areas following 

some form of probability map.  Incident commanders often have to generate such maps from different 

sources of information, some of which may be incomplete or imperfect.  Here, we use a case study of 

the search for a lost person in Joshua Tree National Park in Southern California to illustrate how various 

types of evidence – previous search tracks and a cell phone tower ping – can be integrated, using 

Bayes’ theorem, into an optimal probability search map. 
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Introduction 

Wilderness search and rescue efforts regularly operate under critical time pressures and resource 

constraints.  The risk of death due to exposure or thirst makes it vital to find the lost person as quickly 

as possible.  It is therefore essential that personnel be deployed in the most effective and efficient 

manner possible.  To prioritize search areas, incident commanders must generate probability maps 

from various sources of information, some of which may be incomplete or imperfect. 

Here, we use a cold case study involving the search for a lost person in Joshua Tree National Park in 

Southern California to illustrate how various types of evidence can be combined into an optimal 

probability assessment.  Prior search tracks, the location of a cell phone tower pinged by the subject’s 
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mobile phone, the distance range of that ping, and a viewshed analysis based on terrain altitude were 

geocoded using a geographic information system (GIS).  These various data sources were then 

integrated in a Bayesian analysis to create a probability map for follow-up search efforts. 

 

 

Literature Review 

 

Wilderness search and rescue (WiSAR) operations often have to function in large areas with limited 

resources.  An incident commander must therefore rely on a distribution map showing the most likely 

locations in which to find the missing person in order to efficiently allocate resources, direct search 

efforts, and coordinate rescue workers (Lin & Goodrich, 2010).  Bayes’ theorem provides a means for 

generating such probability maps (Eddy, 2004).  Thomas Bayes was an 18th-century English statistician 

and minister who formulated a theorem describing how to update beliefs when new evidence arises 

(Iversen, 1984).  The equation is:  

 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) 𝑃(𝐴)

𝑃(𝐵)
 

 

where:    𝑃(𝐴|𝐵) is the conditional probability of event A given event B;  

𝑃(𝐵|𝐴) is the conditional probability of event B given event A;  

𝑃(𝐴) is the probability of event A; and  

𝑃(𝐵) is the probability of event B. 

 

Bayesian models are well suited for prioritization analyses.  A search region can be divided up into 

thousands of grid cells, each of which is assigned a probability based on how likely the missing person 

will be in that location.  This prior probability, while initially equal over the entire search area, is then 

adjusted up or down depending on the presence of various attributes (“new evidence”) in the grid cell, 

to create the posterior.  Some examples of such evidence include proximity from origin or destination, 

slope incline, density of vegetation, and the location of a discarded water bottle.  GIS programs and 

modern laptop computing power allow for the rapid calculation of updated probabilities even in remote 

field settings. 

Bayes’ theorem has been applied in a number of search optimization tasks, including strategies to 

rescue lost ships (Richardson & Discenza, 1980), locate submarines (McGrayne, 2011; Richardson & 

Stone, 1971), and find lost treasure (Stone, 1992).  Lin and Goodrich (2010) modeled lost-person 

behavior in wilderness areas with a Bayesian approach using data on terrain features – topography 

type, vegetation, and local slope.  Here, we use the locations of prior search tracks and radius data for 

a tower ping from the subject’s mobile phone to prioritize areas for follow-up search efforts. 
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Case Study 

William Ewasko was a 65-year-old businessman from Marietta, Georgia, who regularly hiked Joshua 

Tree National Park (JTNP) in Southern California (see Figure 1).  On June 24, 2010, he went on a day 

hike in JTNP, planning to be finished around 5:00 pm.  The first location on the planned itinerary he left 

with his fiancée was Carey’s Castle, an ambitious hike for that time of year because of the heat 

(Mahood, 2012).  While arguably not wild or remote, the 1,240 square mile (3,213 km2) park can still be 

dangerous, with large rocks, deep canyons, and abandoned mine shafts (Manaugh, 2018).  Ewasko 

was a strong hiker who navigated by map and compass rather than by GPS (global positioning system). 

 

 

Figure 1: Joshua Tree National Park. 

 

Ewasko failed to call his fiancée that evening; the next morning, park rangers checked the trailhead for 

Cary’s Castle but found no sign of his rented car.  They then checked the other locations on Ewasko’s 

itinerary.  On the afternoon of June 26th, a California Highway Patrol helicopter spotted his vehicle at 

the Juniper Flats Trailhead parking area, a common jumping off point for hikers heading to Quail 

Mountain, also listed on the itinerary. 

 

The search focused on Quail Mountain and other areas reachable from this trailhead.  Then, at 6:50 

am, Sunday, June 27th, Ewasko’s mobile phone registered (“pinged”) with a cell phone tower on Serin 

Drive, Yucca Valley, just to the northwest of JTNP.  This contact suggested he had traveled well beyond 

Quail Mountain.  Searchers redeployed in response but were unable to find any trace of Ewasko. 
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The official search continued until July 5th and involved hundreds of personnel, search and rescue 

teams from all over Southern California, dogs, horses, helicopters, and a fixed-wing aircraft.  A number 

of additional searches were later conducted by experienced volunteers with substantial training in 

search and rescue techniques and backcountry travel.  While the first group of searchers focused on a 

common area, these later efforts covered several additional locations.  JTNP management was 

supplied with electronic copies of the GPS tracks so the search file would contain a complete record.  

To date, there is a reported total of 1,772 person-miles (2,852 km) of search tracks. 

 

The failure to find Ewasko was unexpected.  JTNP is lightly forested and the terrain is fairly easy to 

survey.  There are no remaining viable theories as to his whereabouts.  People follow certain travel 

patterns and rarely move in a truly random manner (Koester, 2008; Robbins, 1977; Rossmo, 2000).  

What they do and where they go makes sense to them at the time (this is why people generally follow 

the easier option of walking downhill).  Subjects who are not quickly found by search and rescue 

personnel have usually done something unanticipated, such as traveling further than estimated and 

leaving the designated search area.  They may also head in an unexpected direction for reasons that, 

while logical to them, are not known to searchers.  It is likely that something like this happened in the 

Ewasko case (Mahood, 2016). 

 

 

Method 

Bayes’ theorem provides a method for combining different types of evidence to produce an optimal 

search strategy for WiSAR operations.  The sources of available information employed in the Ewasko 

analysis include the areas that had already been searched, the location of the Serin Drive tower, the 

radius of the mobile phone ping, and terrain features that would have blocked cell phone coverage 

(Mahood, 2018).  The mathematical details of our Bayesian analysis are provided in the Appendix. 

The boundaries for the analysis are shown in Figure 2.  This region was determined by such factors as 

the location where Ewasko’s vehicle was recovered, park borders, roads and trails, maximum possible 

distance hiked, major terrain discontinuities, and other relevant features.  The assumption here is that 

the region covers the entire area (within reason) where Ewasko might be located. 
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Figure 2: Search Area Boundaries for Bayesian Analysis 

 

This region encompassed 184,857 grid cells, each 100 feet (30.5 m) by 100 feet, or 10,000 square feet 

(929 m2), for a total area of approximately 66 square miles (172 km2).  The probability of each grid cell 

was adjusted based on the following evidence:  

 

1. Search tracks:  The JTNP master file contains electronic GPS tracks for the official and 

volunteer searches for Ewasko (see Figure 3).  These were downloaded into ArcGIS so the 

length of any search track(s) in a given grid cell could be determined.  The tracks were given a 

50-foot (15.2 m) buffer radius, representing a conservative estimate of the range of a searcher’s 

field of vision.  The total length of the tracks was multiplied by 100 (the total buffer width, 50 

feet + 50 feet) and divided by 10,000 (the grid cell area size, 100 feet x 100 feet) to give an 

estimate of the proportion of the grid cell area covered by the search.  This value was then 

subtracted from 1 to calculate the grid cell probability.  A search track through the exact middle 

of a grid cell would result in a probability of 0, while a search track through only a corner would 

produce a proportionately higher probability.  If a grid cell contained multiple search tracks, all 

were considered in the probability calculation.  JTNP is close to both Los Angeles and Palm 

Springs, with millions of visitors annually, so areas immediately next to commonly used trails 

and roads were considered “cleared.” 
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Figure 3: Search Tracks, Trails, and Roads 

 

2. Distance from Serin Drive cell phone tower:  The radial distance from Ewasko’s Verizon mobile 

phone to the tower when it pinged was estimated to be 10.6 miles (17.1 km).  As the exact 

position of the Serin Drive tower is known, the distance to a given grid cell can be readily 

calculated and the probability estimated from a Gaussian (normal) distribution.  Bayes’ model 

can handle “error rates” and analyze a band of possibilities (Blair & Rossmo, 2010).  This tower 

was omnidirectional and not equipped to provide bearing data; however, based on the known 

facts of the case, the direction was almost certainly to the southeast.  Figure 4 illustrates the 

range of the ping distance estimate.  Figure 5 displays the southeast arc of the 10.6-mile 

probable distance radius from the Serin Drive cell phone tower (located off the map to the 

northwest). 
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Figure 4: Probability of Distance from Serin Drive Cell Phone Tower 

 

 

Figure 5: Southeast Arc of Serin Drive Cell Phone Tower 10.6-Mile Ping Radius 

 

3. Viewshed:  A viewshed analysis was calculated in ArcGIS against a digital elevation model 

(DEM) based on the U.S. Geological Survey National Elevation Dataset (NED).  The resolution 
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for JTNP was one third arc-second (~10 meters).  Locations from which the line of sight to the 

Serin Drive cell phone tower was blocked due to other terrain (i.e., impeding areas of higher 

altitude) were identified, and grid cell probabilities reduced accordingly.  To be conservative, 

the height of the tower (100 feet, 30.5 m) was doubled in the analysis.  Geodesic and planar 

methods produced similar results.  Figure 6 shows the areas in the search region with cell 

phone coverage. 

 

 

Figure 6: Areas with Cell Phone Coverage 

 

 

Results 

 

The optimal search map generated by our analysis is shown in Figure 7.  Colors, ranging from blue to 

red, represent the various probabilities for finding Ewasko (the probability color scale in the legend lists 

relative numbers, not specific probabilities).  The peak areas are all to the north of Quail Mountain and 

generally fall within a two-mile (3-km) radius of the now dry Quail Springs.  These areas are not 

coterminous, but rather group roughly into seven different zones.  The inset map depicts the zone of 

highest probability.  These results could be further modified by such factors as a particular location’s 

physical inaccessibility. 
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Figure 7: Optimal Probability Search Map 

Optimal search areas, ranked by colour scale, shown in relationship to JTNP landmarks and 10.6-mile 

ping radius from Serin Drive cell phone tower.  Inset box at upper left magnifies highest probability 

region. 

 

 

Discussion 

 

Incident commanders establish search priorities based on knowledge, experience, and local geography.  

Resources are reallocated accordingly when new information emerges and as areas are cleared.  Here, 

we discuss how that process can be formalized using a Bayesian approach.  Incorporating all available 

evidence reduces the chance of locations being overlooked even if their initial probability assessment 

was inaccurate (Lin & Goodrich, 2010). 

Bayes’ theorem also allows for the encoding of both expertise and uncertainty.  Knowledge and 

experience of lost person behavior and local terrain characteristics should naturally inform a search and 

rescue mission (see Koester, 2008).  However, the ability to handle uncertainty is also needed as 

missing person cases often involve a number of “maybes” and “possibilities.”  For example, one 

searcher found a bandana in JTNP which may, or may not, have belonged to Ewasko.  A Bayesian 
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model can appropriately incorporate such findings (e.g., to the degree it is believed the found item 

belonged to the missing person). 

Our analysis was of a cold case with stable information; however, information is dynamic in the early 

days of a search and rescue mission as new findings and negative search results flow into the incident 

command center.  The probability map requires constant updating, a task this model can quickly 

accomplish with GIS software and GPS inputs.  Responsive functionality is important when time is a 

pressing concern. 

 

Limitations 

All search and rescue efforts involve assumptions, which should be carefully evaluated as they may 

undermine the conclusions if invalid.  The following limitations of this analysis should be noted:  

• The boundaries in Figure 2 outline the area within which Ewasko would be found.  Even if these 

borders are not completely accurate, the effect on the outcome is minimal as the goal was to 

identify and prioritize remaining search areas, most of which were not located near the region’s 

edges. 

• Searchers would have seen Ewasko’s body if it was within 50 feet of their track.  The rocky 

areas in JTNP contain caves and canyons, however, that are difficult to search (Manaugh, 

2018).  Additionally, decomposition and animal scavenging quickly disarticulate human bodies, 

the remains of which may become distributed over large areas (Haglund & Sorg, 1997).  This 

produces smaller body parts (sometimes buried by animals), but also more of them for 

searchers to discover. 

• Signal-propagation physics is reasonably precise, so the distance estimate for the Serin Drive 

cell phone tower ping is thought to be 90% accurate (given no unusual atmospheric thermal 

conditions). 

• The rate of distance drop-off from the cell phone tower was equal for both nearer and further 

positions, as shown in the graph in Figure 4.  This may not be completely accurate as shorter 

distances sometimes appear to be longer due to reflection from rock faces.  To partially 

compensate for this, the height of the tower was doubled in our calculations on the grounds 

that it was better to be more inclusive than exclusive. 

Finally, it should be recognized that this is a simplified model, based on a limited number of factors.  In 

reality, other variables may also be important considerations. 

 

Future Research 

Bayes’ theorem provides the foundation for incorporating a wide variety of information sources.  Here, 

we used prior search tracks and cell phone data (tower location, ping radius, and viewshed).  Lin and 

Goodrich (2010) analyzed topography, vegetation, and local slope.  Other factors that could be 

integrated into a WiSAR framework include direction of travel, weather conditions, seasonality, 

recovered clothing/water bottles, and so on – anything of material relevance.  Research on missing 

persons, the development of lost-person-behavior algorithms, and the use of individual profiles can 
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further inform an analysis (Koester, 2008; Lin & Goodrich, 2010; Velarde, Etlinger, & Rossmo, 2019).  

It may even be possible, with further research, to construct Bayesian networks that model sets of 

relevant variables and their conditional dependencies, allowing for a more powerful and holistic 

approach to optimizing WiSAR operations (Taroni, Aitken, Garbolino, & Biedermann, 2006). 

 

 

Conclusion 

“If you haven’t found them, then they’re someplace you haven’t looked yet” (Pete Carlson, Riverside 

Mountain Rescue Unit, quoted in Manaugh, 2018).  This observation raises the issue as to where one 

should look next.  The purpose of our analysis was to answer that question by illustrating how Bayes’ 

theorem can be used to generate prioritized search maps. 

The Bayesian analysis for the Ewasko case was completed in August 2018.  The results were posted 

by coauthor Thomas Mahood, who has written about the search over several years, on his blog 

(OtherHand.org).  The prioritized areas have yet to be extensively searched, so the accuracy of the 

map in Figure 7 cannot yet be evaluated.  Obviously, the utility of this analysis would have been greater 

if it had been done at the start of the search, then regularly updated. 

This was a cold case, but the same techniques can be applied in search and rescue operations for 

missing persons who are hopefully still alive.  One of the advantages of the approach is its ability to 

continually integrate new information (e.g., item recovery, negative searches, etc.) into the search plan 

in real time in order to optimize resource allocations.  The ultimate goal is to improve WiSAR efficiency 

and effectiveness and help save lives (Lin & Goodrich, 2010). 
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Appendix 

Data inputs 

Data inputs for this Bayesian analysis include:  

1. estimated distance from cell phone tower (10.6 miles) = D 
2. cell phone coverage (no buffer) = C 
3. previous search tracks (50-foot buffer) = S 

 

Prior Probability 

Pprior = 
𝐴

10,000
 

 where A = total search area (in square feet) 

However, as we are only interested in prioritizing search areas, not in estimating actual probabilities, 

the prior can be ignored as it is equal for each cell. 

 

Probabilities 

Distance 

Dx = from Serin Drive cell phone tower 

p(Dx) = from Gaussian distribution; exponent = 1.2 (see graph in Figure 4) 

 

Coverage Area 

Cx = 
𝑐𝑎

10,000
 

p(Cx) = Cx / ∑ 𝐶𝑖𝑁
𝑖=1  

 where: ca = cell phone coverage area (in square feet) within cell x 

  N = 10,000 

 

Search Tracks 

Sx = 1 – 
100𝑃

10,000
 = 1 – 

𝑃

100
 

p(Sx) = Sx / ∑ 𝑆𝑖𝑁
𝑖=1  

 where: P = length of search track (in feet) within cell x 

  N = 10,000 
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Bayesian Probability 

LRTx = (LRDx)(LRCx)(LRSx) = 
𝑝(𝐷𝑥) 𝑝(𝐶𝑥) 𝑝(𝑆𝑥)

[1−𝑝(𝐷𝑥)][1−p(𝐶𝑥)][1−p(𝑆𝑥)]
 

 where: LRTx = total likelihood ratio for cell x 
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DEM  digital elevation model 

GIS  geographic information system 

GPS  global positioning system 

JTNP  Joshua Tree National Park 

NED  National Elevation Dataset 

WiSAR  wilderness search and rescue 
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