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Abstract 

This paper presents a method for incorporating information from waterborne debris that has been 

recovered at a known time and place into the object location distribution. The method involves 

calculating a likelihood function which can be combined with the prior distribution on the location of a 

lost object, such as a ship or aircraft lost at sea, to produce, in a Bayesian fashion, a posterior 

distribution that reduces uncertainty in the location of the loss. When the search operation involves a 

person or vessel adrift at sea, incorporating debris information in this fashion will allow the search 

planner to produce better predictions for the location of the search object at times of future searches 

and enable more effective deployment of search assets. Use of this method will save time, money, and 

lives. 

KEY WORDS: Maritime Search and Rescue, Ocean-Borne Debris, Maritime Loss, Debris Drift, Object 

Location Distribution, Bayesian, Posterior Distribution 

 

 

Introduction 

Despite the considerable communications technology and capabilities available to most vessels and 

aircraft today, there are still incidents where they are lost at sea without anyone receiving a distress call 

from them. In such situations, the realization that the craft is missing may not occur until it becomes 

overdue at its destination. This will delay the initiation of search efforts. Once a search is undertaken, 
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the first objects found are likely to be floating debris that was left on the surface and drifted away from 

the accident site due to winds and currents. When this happens, the first question is, “Where could this 

debris have come from?” to be quickly followed by, “Within the ‘possibility area,’ which locations are 

more likely and which are less likely to have been the source of this debris?” Accident investigators may 

want to locate the sunken wreckage, especially if recording devices were being carried. If there is the 

possibility of survivors (which often follow drift trajectories different from debris), search and rescue 

(SAR) authorities will want to know the location of the incident so they can develop better estimates of 

where survivors adrift will most likely be located when SAR assets can be on scene searching. 

The predominate method of incorporating debris information into an object location distribution involves 

performing a “reverse drift” on pieces of debris from the time and place of recovery to the time of the 

distress. In the US Coast Guard’s Search and Rescue Optimal Planning System (SAROPS), Kratzke 

et al (2010), this requires the user to specify uncertainties in the wind and ocean current estimates and 

run the SAROPS drift system backward in time using the negative of the estimated wind and current 

velocities. There are several difficulties with this method. First, reverse drift models are not well tested 

and validated. Second, the resulting reverse drift location distributions tend to have very large 

uncertainties (spreads) if the debris is found more than one or two days after the time of the distress. 

As a result, the reverse drift distribution often provides very little information about the location of the 

distress. Finally, a better way to incorporate this information is to apply Bayesian inference – a widely 

used method for adjusting prior probability estimates based on subsequently discovered evidence.  

In the first section below, we show two examples of reverse drift distributions produced for the Air France 

Flight 447 search in 2009 -2011. Debris from the AF447 search was first recovered six days after the 

plane crashed into the ocean. The first example shows the large uncertainties produced in the reverse 

drift distribution from these debris using the SAROPS method. This estimate provided very little 

additional information about the location of the aircraft wreckage. The second example shows a reverse 

drift distribution that did not correctly account for wind and current uncertainties and that produced a 

very poor estimate which resulted in a year of wasted search effort. 

In the second section below, we describe our proposed method of incorporating debris information. It 

uses forward drift predictions and constructs the likelihood function for this information which allows us 

to combine this information in a Bayesian fashion with the prior distribution to produce a posterior 

distribution and reduce the uncertainty in the object location. We note that our forward drift methodology 

is essentially a Bayesian version of the BAKTRAK method presented in Breivik et al. (2012). We 

illustrate the power of the forward drift method by showing how it was used to incorporate information 

from a piece of debris from the Malaysian Airlines Flight MH370 crash found on Reunion Island. In this 

example we see that this debris information reduced the uncertainty in the object location distribution 
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even though it was found more than a year after the loss. The third section compares the reverse drift 

and forward drift methods of incorporating debris information. 

The MH370 example involves search for stationary target. However, in the fourth section below, we 

show how this forward-drift method can be applied to search objects that are moving such as survivors 

adrift in a lifeboat. In the fifth, we show how to apply the forward drift method when the time of loss or 

distress is uncertain. 

 

Reverse Drift Examples 

In the early morning hours of June 1, 2009, Air France Flight AF447 from Rio de Janeiro to Paris 

disappeared during stormy weather over the Atlantic with 228 passengers and crew aboard. Figure 1 

shows the last known position (LKP) of AF447. 

 

Figure 1. Last known position (LKP) for AF447, 2.98°N, 30.59°W 

At dawn a surface search for survivors and wreckage began. On June 6 the first bodies and floating 

debris were found 38 nautical miles (nm) north of the LKP. The French Bureau of Enquiries and Analysis 

(BEA) took charge of the search and estimated that the plane must have crashed within 40 nm of the 

LKP as shown in Figure 2.  

 

LKP 
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Figure 2. 40 nm circle about LKP 

 

An intense acoustic search was performed to detect the underwater locator beacons (ULB) attached to 

the flight data recorder and cockpit voice recorder. This search was unsuccessful. The following year 

an intensive sonar search was performed based on a faulty reverse drift analysis by a group of 

oceanographers called the drift group. This search was also unsuccessful. In 2010, after two years of 

unsuccessful search, Metron was tasked by the BEA to compute a probability map for the location of 

the wreck using all available information including unsuccessful search as well as recovered bodies and 

debris. On April 8, 2011, BEA issued the following statement  

This [Metron] study, published on the BEA website 20 January 2011, indicated a 

strong possibility for the discovery of the wreckage near the center of the [40 nm] 

Circle. It was in this area that it was in fact discovered after one week of exploration. 

—— Trodec (2011). 

SAROPS Reverse Drift for AF447 Distribution. 

One piece of information that Metron used to construct its probability map was the set of positions and 

times at which 33 bodies were recovered from 6-10 June 2009. The positions of these bodies were 

drifted back to the time of crash using the best wind and current estimates available to us for the time 

and place of the crash. We used the SAROPS reverse drift methodology with our best estimate of the 
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uncertainty in the wind and current estimates. The result of this was a distribution with an extremely 

large spread extending far beyond the 40 nm circle as shown in Figure 3. This was not very helpful in 

locating the wreck. 

 

Figure 3. Reverse drift distribution. The 40 nm circle is shown as a thin yellow line. Vectors indicate the 
estimated direction of the surface currents at the time of the crash 

 

Drift Group’s Reverse Drift Distribution 

Over the winter of 2009-10, the BEA assembled a team of distinguished oceanographers (the drift 

group) and tasked them to produce a reverse drift distribution for the location of wreck. They used data 

from Argo floats, NOAA’s Atlantic Oceanographic and Meteorological Laboratory surface drifters, and 

fishing buoys drifting in the area at the time of crash to inform their current models. Using these models, 

they performed a reverse drift of the positions of the recovered bodies and debris found on June 6 and 

7 back to the time of the crash. They took the average of the “most consistent” predictions to obtain the 

rectangle shown in Figure 4 which they claimed was a 95% containment region for the location of the 

wreck. The search in the summer of 2010 was based on this rectangle and was unsuccessful. There 

are a number of methodological errors in this approach, but the main ones are (1) the failure to properly 

incorporate the uncertainty in their predictions into their estimate of the location of the wreck and (2) the 

removal of predictions that were “inconsistent” with the majority of the predictions.  

40 nm circle 
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The drift group’s prediction also violated one of the cardinal rules of search planning – namely use all 

available information when forming estimates of the search object’s possible/probable locations during 

the next search. In the fall of 2010, the BEA asked Metron to produce a probability map for the location 

of the wreck over the winter of 2010-11 using all available information. This effort produced the 

probability map that the led to finding the wreck within days of resuming the search in the spring of 

2011. 

 

Figure 4. The red rectangle is the 95% containment region estimated by the drift group. The circle is the 
40 nm circle. The "wiggly” lines are the paths of 8 data buoys placed inside the 40 nm circle on June 3, 

2010 and allowed to drift for 6 days. The wildly different paths of these buoys illustrate the complexity of 
the ocean currents in the search area. 

 

 

Forward Drift Method 

This section describes a Bayesian method for incorporating debris information into the probability 

distribution for a search object whether it is stationary or moving. 

Likelihood Function for Recovered Debris 

Suppose a vessel or aircraft is presumed sunk in the ocean, and we are uncertain about its location. 

Suppose that a piece of floating debris is recovered at a location y  at time T  after the loss and that it 

is determined that the debris came from this craft. If we have a model for debris movement in the vicinity 

Drift Group Search 
Rectangle 
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of the loss over the time during which the piece of debris floated on the water, we can use this model 

to compute a likelihood function for the location of the loss. This likelihood function can be combined 

with the prior distribution on the location of the loss to compute a posterior distribution for the loss 

location. In this Bayesian fashion, the posterior will incorporate the information from the debris recovery 

into the estimate of the location of the loss. As more debris is found, this process can be iterated to 

refine the posterior probability estimate of the source location. 

Computing the Likelihood Function. For convenience, we impose a grid of cells on the ocean area 

of interest indexed by 1, , .j J=  Let ( ) 0p j   be the prior (before incorporation of the debris 

information) probability of the vessel being located in cell .j  We assume that 

 1
( ) 1.

J

j
p j

=
=   

The observation ( , )y T  is the location and time (after loss) of the recovery of the debris. The likelihood 

function L  for this observation is defined as follows. 

 ( )  ( , ) | Pr Debris floated to position  over time |  it originated in cell .L y T j y T j=   

Note that the observation ( , )y T  is fixed or known. The cell j  is variable or unknown. As a result, the 

likelihood L   is a function of .j  This function need not be a probability distribution on the set of cells 

1, , ,j J=  i.e., it may not sum to 1. It gives the relative likelihood of the various candidate cells being 

the origin of the piece of debris. 

Using a model of winds and currents plus leeway assumptions, one can perform the following set of 

experiments to estimate the likelihood function in . Designate a region R  around the point .y  The size 

of this region is somewhat arbitrary but it should be large enough to capture a reasonable sample of 

the drift particles used to estimate .L  For each cell j  in the prior distribution, generate a large number 

N  of initial points in that cell and drift them for time T  using independent draws from the statistics of 

the ocean currents and winds to produce N  drift paths. Calculate the number jn  of paths that enter R  

over time T . Then 

 
( )( , ) |

jn
L y T j

N


  

is an estimate of ( )( , ) |L y T j
 for 1, , .j J=  

Computing the posterior. Using Bayes rule, it is now straight-forward to compute the posterior 

distribution for the location of the loss. It is given by 

 

( )

( )
1

( , ) | ( )
( )

( , ) | ( )
J

j

L y T j p j
p j

L y T j p j
=

=
   for 1, , .j J=   
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MH370 Example  

This example is taken from a Metron technical paper by Gurley and Stone (2015) written shortly after 

the first piece of debris, a flaperon from the wing of MH370 (Figure 5), was found on Reunion Island 

(Figure 6) off the East Coast of Africa more than a year after the crash. The paper developed the 

forward-drift likelihood function method of incorporating debris information and applied it to the MH 370 

flaperon found on Reunion Island. At the time the paper was written, the authors did not have detailed 

information about the prior probability distribution being used by the Australian Air Transport Safety 

Board (ATSB) to plan their search, so they relied on public statements and press releases to 

approximate this distribution. They also had to rely on a publicly available and somewhat coarse-grained 

model for ocean currents, and they did not account for the possible effects of wind (leeway) on the 

flaperon. Nonetheless, the example and analysis summarized below show that incorporating this debris 

information produced a significant shift to the north of the location distribution for the MH370 crash. 

Details of the analysis are given in Gurley and Stone (2015). 

  
 

 
 

Figure 5. Flaperon found on Reunion Island 29 
July 2015 

 

Figure 6. Reunion Island 

 

 

 

An extensive analysis (ATSB (2016) and Davey et al (2016)) performed by the Australian Defence 

Science and Technology (DST) Group in 2016 used more detailed modelling of ocean currents, a model 

for the leeway of the flaperon, and the forward-drift likelihood method of the paper to produce a similar 

analysis using the flaperon and other debris recovered from MH370. The overall conclusion was the 

same. The probability distribution for the location of MH370 was shifted to the North as a result of 

incorporating the debris information. 
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Forward-drift likelihood example 

Gurley and Stone demonstrated the forward-drift likelihood method by generating a 2-dimensional 

posterior probability map for the location of the MH370 that incorporated their best estimate of the prior 

probability distribution for MH370 based on public statements from senior ATSB officials directing the 

search operation. They computed a 2-dimensional likelihood function using the information from the 

recovery of the flaperon on Reunion Island and a general, long timescale, probabilistic debris transport 

model for the drift model for the debris. 

Ocean drift simulation 

van Sebille et al (2012) used multiple decades of ocean drifter buoy trajectory data from the Global 

Drifter Program to generate a transport model that captures the observed dynamics of ocean circulation 

on global and regional scales. Their approach models ocean debris movement as a discrete-time 

Markov chain process where the transition matrix T  represents the probability of debris movement from 

any grid cell to any other grid cell at each time step. Based on the ocean drifter buoy data, van Sebille 

empirically derived T  for a global 
o o1  1x  grid at t = 60 days. To capture seasonal variability, van 

Sebille derived separate bimonthly values for T  by analysing observations over 2-month windows 

throughout the year. Specifically, they estimated Jan-Feb Mar-Apr, ,  etcT T
. From these transition matrices, the 

probability distribution of debris can be computed by iterating the equation  

 60 days  where  is the bi-month index corresponding to starting time t t mp p m t+ = T
  

and tp  is the row vector of probabilities in cells for the location of the debris at day .t  

There are several assumptions implicit in this approach. First, we assume that the ocean drifter buoy 

trajectory observations that are the basis of the transition matrices iT  adequately approximate the 

general movement of a debris field in the open ocean. No attempt is made to perform high-resolution 

modelling of separate wind and current forcing or leeway modelling to predict the resultant differential 

movement due to the different sizes of individual pieces of debris. van Sebille notes that while all the 

drifting buoys were deployed with drogues at 15m depth, approximately 52% lost their drogues during 

their reporting life. Therefore, the observation set is a random mix of objects impacted by wind and 

current forcing (buoys without drogues) and objects impacted by current forcing only (buoys with 

drogues). This closely approximates the mix of debris typically found at sea (van Sebille et al (2012)): 

some objects at the surface are subject to wind forcing and some are near-neutrally buoyant just below 

the surface not impacted by wind forcing. Second, the van Sebille model conserves mass. It assumes 

that all initial drift particles remain in circulation: all coasts are hard boundaries, so nothing washes 

ashore, and nothing sinks. 
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Under the limits described above, Gurley and Stone used this model to estimate gross debris drift 

patterns over a 480 day period starting in March 2014 varying the source location across the ATSB 

MH370 Wide Search Area region (MH370 (2014)). For their analysis, they considered the arc segment 

bounded by -15.3
o

and -40
o

to provide sufficient buffer both north and south for the prior distribution. 

The width of the region is ±  125nm normal to the arc at each point which is the maximum distance 

from the arc that ATSB considered across all their end-of-flight scenarios (see Table 1 of ATSB (2014)). 

These parameters define an annulus sector on the earth’s surface. Since all the subsequent analysis 

was conducted on the 
o o1  1x latitude/longitude grid used in the debris transport model, the final set of 

grid cells examined as possible source areas is the intersection of the regular 
o o1  1x  grid and the 

defined annulus sector.  This yielded 213 candidate grid cells as shown in Figure 7. 

 

Figure 7. MH370 Wide Search Area grid cells (blue) used for candidate source locations 

 

At simulation start, debris were uniformly distributed across a 
o o3  3x box centered at each of the 213 

candidate source cells. Debris movement was then drifted forward eight time-steps (480 days) starting 

in March 2014.  Examples are shown in Figure 8. 

Likelihood Function Estimation. To estimate the likelihood function ( )( , ) |L y T j
, they designated a 

sink region around ,y  and for each of the 213 candidate source cells, they accumulated all particles 

that arrived at y during any time step up to the end time .T  Let ( , , )n y t j  be the number of particles that 

arrived in the sink region at time t  from source cell j  for 1, ,213.j =  Following  

 
( )

0

1
( , ) | ( , , )

T

t

L y T j n y t j
N =

 
 for 1, ,213.j =   

 

Reunion 
Island 
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Since the van Sebille model is mass conserving, all particles entering the sink region y are removed 

from the general population at the time step at which they enter the region. This prevents double 

counting during subsequent time steps. The sink region was modeled as a 
o o3  3x box centered on 

Reunion Island (-21,56).  The resulting estimate of ( )( , ) |L y T j  is shown in Figure 9 for all 213 cells 

that comprise the MH370 source set. 

 

Figure 8.Probability distribution of debris after a 480-day drift simulation for sample northern (top) and 
southern (bottom) source regions within MH370 Wide Search Area zone. Source region for each is shown 

as a black box. Red is 0.002 
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Figure 9.  Estimate of likelihood function for the MH370 flaperon found on Reunion Island as a function of 
source region location. Red is 0.04. 

 

To better understand the spatial distribution of relative values across all the possible source grids, we 

computed the ratio 

 
(( , ) | ) (( , ) | ) / max (( , ) | )

j
y T j L y T j L y T j =

 

We found that cells in the northern portion of the MH370 Wide Search Area are ~10 times more likely 

to be the source location than cells in the southern portion. 

Prior and Posterior Distributions 

Gurley and Stone then attempted to estimate the prior probability distribution in use by the MH370 

search team (in 2015) based on the published ATSB reports and public statements from Australian 

officials. Their focused search zone had progressively shifted to the more southern areas of the Wide 

Area Search region over 2014-2015, and statements in 2015 from senior government officials describe 

a very high certainty that the MH370 impact zone was in the extreme southern portion of the Wide Area 

Search region.1  Based on a review of the ATSB operational reports, the area they have concentrated 

on is roughly bounded by the latitudes -32
o

 to -39
o .  While there isn’t enough information in the 

available ATSB reports to explicitly calculate the prior probability distribution or to assess the source of 

 
1 Australian Deputy Prime Minister was quoted in Wall Street Journal Article on 04 August 2015 saying 

that “The experts are telling us that there is a 97% possibility that it [MH370] is in that area [current 

search area] and if you move into a wider area there is just too much to be covered for a small chance 

of finding the aircraft.”   
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ATSB’s certainty in their assumptions, Gurley and Stone approximated the general shape of the prior 

probability distribution that is the basis for the ATSB planning. 

The paper modeled the prior distribution on the location as a product of independent distributions on 

two components, distance normal to the arc centerline and distance along the arc centerline from -40°. 

The paper gave the first component a normal distribution and the second component a gamma 

distribution with 5.8, 1 = = . This gamma distribution has the desired properties of quickly going to 

zero immediately to the left (south) of the peak, concentrating about 95% of the probability in the region 

between -39
o

 and -32
o

 and retaining a more gradual tail to the right (north) of the peak. The normal 

component is modeled by a Gaussian distribution with mean 0 and 50 km (27 nm) = . The resulting 

prior and posterior probability distributions are shown in Figures 10 and 11. The change in probability 

in each cell from Figure 10 to Figure 11, ( ) ( ) ( )p j p j p j = − , is shown in Figure 12. The regions that 

have increased in probability are shown in red and those that have decreased are shown in blue. Figure 

12 shows a clear shift of the posterior distribution to the north reflecting the effect of applying the debris 

likelihood function. 

 

Figure 10. Bivariate prior probability distribution. Max scale (red) is 0.02. 
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Figure 11. Posterior probability distribution.  Max scale (red) is 0.02. 

 

 

Figure 12. Change in probability distribution of possible MH370 impact sites based on discovery of the 
flaperon on Reunion Island. Scale is +/- 0.035 
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Comparison of reverse drift and forward-drift likelihood methods 

The contrast between the results of the SAROPS reverse-drift estimate for the location of AF447 based 

on the bodies found 6 to 10 days after the crash and the forward-drift likelihood method for incorporating 

information from the MH370 flaperon found on Reunion Island more than a year after the loss of MH370 

is remarkable. Using reverse drift, the information from the bodies, found only 6 to 10 days after the 

AF447 crash, provided little helpful information for the location of AF447. By contrast, using the forward-

drift likelihood method demonstrated the potential to provide significant information more than a year 

after the loss. 

 

Moving Search Objects 

The discussion so far has centered on the incorporating debris information into the location distribution 

for a stationary search object. In this section, we describe how to use the forward-drift likelihood method 

to incorporate debris information into distributions for moving search objects such as missing people or 

boats in the ocean.   

For a moving search object, we begin with the object location distribution at the time of loss. Designate 

this as time 0.t =  Search for a moving object requires that one specify a (probabilistic) model for the 

movement of the search object over time, so that one can forecast the probability distribution for the 

object location at any time 0.t   For the convenience of this discussion, we will divide time into discrete 

intervals so that t n=  refers to the thn  time interval, and we will treat the object as stationary during a 

time interval. 

To incorporate debris information, one calculates the likelihood function using  and  above and 

incorporates it into the object location distribution at 0t =  using . One then applies the motion model to 

this distribution to obtain the updated distribution at any time 0.t   If there has been unsuccessful 

search during time interval t n= , then one must compute the posterior at t n=  given this unsuccessful 

search before motion updating to times .t n  If one is planning a search at time t , then one needs to 

use the object location distribution at that time updated for the debris information and unsuccessful 

search. This will yield more effective and efficient search plans. 
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Uncertain Distress or Loss Time 

If the time of the distress or loss of the object is uncertain, then the calculation and application of the 

debris likelihood function in - is still straight-forward but more complicated. In place of the initial 

distribution on location in , we must specify a distribution on the time s  and location j  of the loss or 

distress. Let 1, ,s S=  be the possible loss times, the prior in  becomes 

 
( )

1 1
, 1.

S J

s j
p j s

= =
=    

The debris likelihood function in  becomes 

   ( )( )  ( , ) | , Pr Debris floated to position  in time |  it originated in cell  at time .L y T j s y T j s=
  

The posterior distribution on the time and position of loss or distress in  becomes 

 

( )( )

( )( )
1 1

( , ) | , ( , )
( , )

( , ) | , ( , )
S J

s j

L y T j s p j s
p j s

L y T j s p j s
 = =

=
    

 for 1, ,  and 1, , .j J s S= =   

 

Conclusion 

This paper has presented a Bayesian forward-drift method of incorporating debris information into a 

search object location distribution. It compared this method to the reverse-drift method commonly used 

by SAROPS and other search and rescue planning programs. We showed by example that reverse drift 

can lead to a distribution with very large uncertainties which does not provide useful information on the 

object location. By contrast, we presented an example using the Bayesian forward-drift method that 

showed that even debris recovered more than a year after the loss can provide valuable location 

information. Finally, we discussed how to extend the forward-drift method to moving search objects and 

to search objects whose time of distress or loss is uncertain. The forward drift method needs to become 

the new standard for incorporating information from drifting debris. 
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Abbreviations 

AF  Air France 

ATSB  Air Transport Safety Board 

BEA  Bureau of Enquiries and Analyses 

DST  Defense Science and Technology 

LKP  Last Known Point 

MH  Malaysian Airlines 

nm  nautical miles 

SAROPS Search and Rescue Optimal Planning System 
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